
July 1998 The Delphi Magazine 21

Under Construction:
Automated Email
by Bob Swart

Next month, we’ll be exploring
the world of Artificial Intelli-

gence again, specifically the con-
cept of Intelligent Agents (or
Robots) for the internet. But before
we start on that path, this month
our subject is the Simple Mail
Transfer Protocol (SMTP).

So why bother about next month
already? Well, because in this
column we’ll develop a useful tech-
nique that can be deployed by the
upcoming web Robot for next
month, and I’m sure it’s something
every webmaster would like to use
at times as well. I’m talking about
the ability to automatically send
email messages (for example from
the web server), without any
human intervention whatsoever.

Protocols
For someone who doesn’t know (or
care) much about the underlying
email message sending protocols,
as long as the message gets there, I
discovered a number of new
acronyms when looking into this.
The first one, SMTP, stands for
Simple Mail Transfer Protocol, and
is a very old protocol, originally
designed for UNIX machines, but
operational on other servers as
well (such as the web/mail servers
I connect to).

Apart from SMTP, I also learned
about MAPI (Microsoft’s Mail API)
or the later IMAP (anyone know
what that stands for?) and found
some folk using Lotus Notes. But all
I was looking for was a protocol for
sending automatic email messages
from the web/mail servers I con-
nect to and it seemed that SMTP
was implemented on all of them.

NetManage ActiveX TSMTP
When I started with this column, I
first checked out the SIMPMAIL.DPR
project, which is provided with
Delphi 2.01, 3 and 4 in the directory
DEMOS/INTERNET/SIMPMAIL. This

small sample project illustrates the
use of the NetManage SMTP and
POP3 ActiveX controls. My friend
John Kaster (who now works for
Inprise in the US) already warned
me about the POP3 control, which
he ended up rewriting in Object-
Pascal from scratch, and after a few
tests with the SMTP control, I had
to agree with him. Using an ActiveX
control to manage a relatively
low-level protocol as SMTP or
POP3 does not seem to be the best
solution to me.

Native SMTP
Right after I moved the TSMTP
ActiveX control aside, I down-
loaded and read the latest RFC
(Request For Comment) on the
SMTP protocol standard, being
RFC 821 by Jonathan B Postel,
dated August 1982. SMTP uses a
TCP/IP connection, that we can
implement using Delphi’s TClient-
Socket component. SMTP uses port
25, a value you must set in the Port
property after you’ve created the
ClientSocket.

But before we start to write our
own native SMTP component,

based on the TClientSocket con-
trol, let’s first decide how to name
this new component and how
exactly to include the socket.

Naming Conventions
Apart from the fact that the Net-
Manage ActiveX control is a bit
bulky, it has another even worse
drawback: it ships with Delphi and
is called TSMTP. This means that any
third-party vendor that also sells a
TSMTP control will probably get into
name collisions (meaning that the
component user must remove the
internet solutions pack package in
order to make the name TSMTP
available, or modify the source
code for the third-party compo-
nent changing the name to TWhat-
EverSMTP instead).

In order to prevent these prob-
lems (which are even worse if you
consider the fact that not only
component names but also unit
names need to be unique among
packages), a new website called
the Delphi Prefix Registry has been
set up by Steven Healey at
http://developers.href.com/
registry/dpr.htm

unit TBOBSMTP;
interface
uses Classes, ScktComp;
type
TBSMTP = class(TComponent)
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

public
procedure SendMail;

protected
_Socket: TClientSocket;
Step: Integer;
procedure SocketRead(Sender: TObject; Socket: TCustomWinSocket);
procedure SocketWrite(Sender: TObject; Socket: TCustomWinSocket);

private
fMailServer: String;
fMessageTo: String; { only one "To" at a time }
fMessageFrom: String;
fMessageSubject: String;
fMessageText: TStringList; { assign to TMemo.Lines, for example }
procedure SetMessageText(NewText: TStringList);

published
property MailServer: String read fMailServer write fMailServer;
property MessageTo: String read fMessageTo write fMessageTo;
property MessageFrom: String read fMessageFrom write fMessageFrom;
property MessageSubject: String read fMessageSubject write fMessageSubject;
property MessageText: TStringList read fMessageText write SetMessageText;

end;

➤ Listing 1

22 The Delphi Magazine Issue 35

which gives an overview of this
problem and lists a set of vendor
prefixes that others should hope-
fully take into consideration. My
personal prefix for the compo-
nents I develop for The Delphi
Magazine and my website is B, so
this month we’ll be developing a
TBSMTP component!

Since name clashes can occur at
the unit name level as well, I
decided to use the unit name
TBOBSMTP for this component.

Inheritance And Delegation
There are basically two ways we
can implement our native Delphi
TBSMTP component. We can use
inheritance and take the TClient-
Socket component and derive a
TBSMTP component from (since we
need the socket in the first place),
or we can use delegation and
derive TBSMTP from a basic non-
visual TComponent, hiding the
socket as property in the imple-
mentation details. I decided to use
the latter approach, mainly
because we can now create and ini-
tialise the ClientSocket inside the
TBSMTP constructor, and hide the
implementation details (like port
number 25) from the user of the
component who only wants to
send an email message.

TBSMTP
The new component, named
TBSMTP, starts with a constructor
and destructor, and a public pro-
cedure SendMail to send the email
message. We also need a few pub-
lished properties to specify the
SMTP mail server (like smtp.gate-
bolsan.nl), the recipient, the name
of the sender (us, usually), the sub-
ject line, and finally a set of strings
to hold the actual contents of the
email message. If you ignore the
protected parts, then this is
exactly what the class definition in
Listing 1 offers.

Note that I have only a single
MessageTo property, which pro-
vides us with one email address to
send the message to. There’s also
no MessageCc property (for carbon
copy functionality), but if you read
on you’ll find that these features
won’t be hard to implement
afterwards.

Now that we’ve seen the design-
time interface, let’s look at the
implementation details, and spe-
cifically the protected section
where the internal _Socket field of
type TClientSocket is defined. This
is the placeholder for the socket
control that we need to send the
email message behind the scenes.
Note that I use an underscore
prefix in the name of this internal
field, to remind me that this field is
only used to implement the SMTP
protocol, and is not visible to the
outside world. We also need two
event handler (callback) methods
assigned to this _Socket control,
for the OnRead and OnWrite events.

The TBSMTP constructor is the
place where we need to create the
TClientSocket field, assign the
OnRead and OnWrite event handlers
and set the Step field to 0 (Step is
used to keep track of the ‘steps’
that have been done while actually
sending the email message, as
we’ll see in just a minute). The last
statement in the constructor allo-
cates a TString class for the mes-
sage text. This means we can add
individual strings to this list, or
simply assign a TMemo.Lines
property to it, for example.

Of course, what gets con-
structed must be destructed and
Listing 2 shows the constructor
and the accompanying destructor.

constructor TBSMTP.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
_Socket := TClientSocket.Create(Self);
_Socket.Port := 25; // according to RFC 821
_Socket.OnRead := SocketRead;
_Socket.OnWrite := SocketWrite;
Step := 0;
fMessageText := TStringList.Create

end {Create};
destructor TBSMTP.Destroy;
begin
fMessageText.Free;
_Socket.Free;
_Socket := nil;
inherited Destroy

end {Destroy};

➤ Listing 2

Socket Event Handlers
The _Socket field, of type TClient-
Socket, contains two event handler
properties that we must fill with
event handler methods. The
OnRead event is fired whenever the
_Socket control gets data from the
SMTP server. This usually is a
simple confirmation, but can also
be an error code, so this is a good
place to add error detection and
handling code.

After we actually read the infor-
mation the server sent us, using
ReceiveText, we can call the Sock-
etWritemethod to send something
back to the SMTP server, as in List-
ing 3. Actually this makes it sound
as if we’re responding to the SMTP
server, while in fact the server is
responding to our data: we just
wait until the server responds
before sending more data.

The SocketWrite method is
called in response to a SocketRead
event, this is the place where we
actually set up the communication
with the SMTP server and, using
six steps, send the message
across. The member field Step is
used to keep track of the current
step. Based on the information
from the RFC 821, the six steps that
I identified are shown in Figure 1
(each step must be followed by an
answer from the SMTP server
before the next step can be sent).

procedure TBSMTP.SocketRead(Sender: TObject; Socket: TCustomWinSocket);
var Status: String;
begin
Status := Socket.ReceiveText;

{$IFDEF DEBUG}
writeln(log,Status);

{$ENDIF}
SocketWrite(Sender, Socket)

end {SocketRead};

➤ Listing 3

24 The Delphi Magazine Issue 35

In Listing 5, I added another step
between steps 3 and 4, by adding a
RCPT TO:bob@bolesian.nl, thereby
making sure that no matter who’s
the recipient, I always get a copy at
my mailbox at bob@bolesian.nl as
well. This also illustrates how you
can send one message to multiple
people all at once.

We’re not done yet. There’s one
detail of the SMTP protocol that I
don’t quite understand myself.
Although we specified the sender
(MAIL FROM) and recipient (RCPT TO)
in steps 2 and 3, we still have to
repeat the From: and To: fields (and
optionally Cc: as well) as the first
few lines of the message body. In
fact, that’s also the place to put the
Subject: line.

After these extra headers, we
need to send a blank line, followed
by the actual body of the message
(stored in the MessageText prop-
erty), followed by the dot on a new
line, as in Listing 4.

The actual act of sending an
email message is done by first
assigning the MailServer name
(either the full name, like
smtp.gatebolsan.nl, or the res-
olved IP address), and then acti-
vating the internal _Socket field,
which can be done with either a
call to Open, or by setting the Active
property to True.

The last remaining problem is to
keep waiting until we’ve finished
the last step (magic number 7) and
then quit. This waiting is done in a
repeat...until loop that calls
Application.ProcessMessages. This
means that we must include the
Forms unit to be able to call Appli-
cation.ProcessMessages, which
might be considered a bit overkill
(the reader’s exercise for today is
implement a waiting loop without
having to use the TApplication
class!).

RobotBob Version 0.1
Using the TBSMTP component and
setting its properties at either
design-time or runtime, we are
now able to write an application
that can send an email message
without any further end-user inter-
ference. A small sample applica-
tion that can run from a local
machine having a TCP/IP connec-
tion to an SMTP server (as in the
Bolesian intranet, or when you’re
connected to your ISP with a
socket connection available), is
the program AutoMail from Listing
6. Although it won’t do much at
this time, it can actually be consid-
ered the first draft version of
RobotBob.

1. Send HELO to initiate a conversation with the SMTP server (note that
this is not a typo, it is indeed the four letter ‘HELO’ not ‘HELLO’).
2. Send MAIL FROM: plus sender email address.
3. Send RCPT TO: plus recipient email address.
4. Send DATA and prepare to send the entire message.
5. Send the message, followed by a . (period) on a single line.
6. Send QUIT to terminate the conversation.

➤ Figure 1: Stages in sending email using SMTP.

Now all we need to add to Robot-
Bob (next time) is some intelligent
task that produces some output,
which is then in turn used as body
text for the automatic email
message.

Debug Logfile
You must have noticed a number
of {$IFDEF DEBUG}...{$ENDIF} state-
ments in the code I’ve shown you.
These can be used to write to an
output logfile (see the full source
code on the disk for more details)
to trace the connection and SMTP
process. For example, sending a
simple test message using the pro-
gram from Listing 5 resulted in the
DEBUG logfile shown in Listing 7
(the text which is shown here in
red for clarity was sent by Robot-
Bob, while the normal text is the
response from the SMTP server on
Bolesian’s intranet WinNT web
server).

Note that we didn’t get an
answer after the QUIT command,
since RobotBob automatically ter-
minates after sending the QUIT
command itself.

procedure TBSMTP.SocketWrite(Sender: TObject; Socket: TCustomWinSocket);
const CRLF = #13#10;
var
i: Integer;
Send: String;

begin
Inc(Step);
case Step of
1: Send := 'HELO ' + fMessageFrom;
2: Send := 'MAIL FROM:' + fMessageFrom;
3: Send := 'RCPT TO:' + fMessageTo;
4: Send := 'RCPT TO:bob@bolesian.nl'; { copy to myself }
5: Send := 'DATA';
6: begin

{$IFDEF DEBUG}
writeln(log,'From: ' + fMessageFrom);
{$ENDIF}
Socket.SendText('From: ' + fMessageFrom + CRLF);
{$IFDEF DEBUG}
writeln(log,'To: ' + fMessageTo);
{$ENDIF}
Socket.SendText('To: ' + fMessageTo + CRLF);
{$IFDEF DEBUG}
writeln(log,'Cc: bob@bolesian.nl');
{$ENDIF}
Socket.SendText('Cc: bob@bolesian.nl' + CRLF);
{$IFDEF DEBUG}
writeln(log,'Subject: ' + fMessageSubject + CRLF + CRLF);
{$ENDIF}
Socket.SendText('Subject: ' + fMessageSubject + CRLF + CRLF);
for i:=0 to Pred(fMessageText.Count) do begin
Send := fMessageText[i];
{$IFDEF DEBUG}
writeln(log,Send);
{$ENDIF}
Socket.SendText(Send + CRLF)

end;
Send := '.'

end;
7: Send := 'QUIT'

end;
{$IFDEF DEBUG}
writeln(log,Send);

{$ENDIF}
Socket.SendText(Send + CRLF)

end {SocketWrite};

➤ Listing 4

July 1998 The Delphi Magazine 25

procedure TBSMTP.SendMail;
begin
Step := 0;
_Socket.Active := False;
_Socket.Host := fMailServer;
_Socket.Open;
repeat
Application.ProcessMessages

until Step > 7
end {SendMail};

➤ Listing 5

program AutoMail;
{$I-}
uses
TBOBSMTP;

var
f: Text;
Str: String;

begin
with TBSMTP.Create(nil) do
try
MailServer := 'smtp.gatebolsan.nl';
MessageFrom := 'RobotBob';
MessageTo := 'drbob@bolesian.nl';
MessageSubject := 'Automatic E-mail using SMTP';
MessageText.Add('Hi Guys,');
MessageText.Add('');
System.Assign(f,'c:\usr\bob\message.txt'); // the e-mail message
Reset(f);
if IOResult = 0 then while not eof(f) do begin
readln(f,Str);
MessageText.Add(Str)

end;
System.Close(f);
MessageText.Add('');
MessageText.Add('Groetjes,');
MessageText.Add(' Bob Swart (aka Dr.Bob - www.drbob42.com)');
SendMail;

finally
Free

end
end.

➤ Listing 6

Authentication
As you can see from the logfile, I
can actually pretend to be just
about anyone when sending out
email messages using the SMTP
protocol.

And I fear that this is what a lot of
the professional email spammers
are doing as well (and why it is gen-
erally useless to reply to these
messages anyway). But, gentle
reader, you won’t be using my
code to start sending Spam email,
will you, please?

1998/05/22 5:38:09 PM
HELO RobotBob
220 nt01.bolesian.nl WindowsNT SMTP Server v3.02.10/1.aeue ready at Fri, 22 May
1998 7:11:42 +0100
MAIL FROM:RobotBob
250 nt01.bolesian.nl RobotBob
250 Ok.
RCPT TO:hubert@bolesian.nl
250 Ok.
RCPT TO:bob@bolesian.nl
250 Ok.
DATA
354 Start mail input, end with <CRLF>.<CRLF>.
From: RobotBob
To: hubert@bolesian.nl
Cc: bob@bolesian.nl
Subject: Automatic E-mail using SMTP

Hi Guys,

This code is useless! You have no honour!
A TRUE Klingon warrior does not comment his code!
You question the worthiness of my Code?! I should kill you where you stand!
Perhaps today IS a good day to Die! I say we ship it!

Groetjes,
Bob Swart (aka Dr.Bob - www.drbob42.com)

.
250 Requested mail action Ok.
QUIT

➤ Listing 7

Next Time...
Sending an email message from an
SMTP client machine by using a
TCP/IP connection to an SMTP
server is one thing. But will this
technique still work without
changes if we just upload the auto-
matic email application to a web
server (which is an SMTP server as
well), or do we need to modify the
way we communicate with the
server?

What are the practical uses of
our TBSMTP component, apart from

Spam, which is considered to be an
abuse of the internet, of course?

These questions and more will
be answered next time when we
finally witness the birth of the real
RobotBob!

Bob Swart (aka Dr.Bob visit
www.drbob42.com) is a profes-
sional knowledge engineer tech-
nical consultant for Bolesian
(www.bolesian.com), freelance
technical author for The Delphi
Magazine, co-author of The Revo-
lutionary Guide to Delphi 2 and
the website knowledge base Del-
phi Internet Solutions. In his spare
time, Bob likes to watch video
tapes of Star Trek Voyager and
Deep Space Nine with his 4-year
old son Erik Mark Pascal and his
1.5-year old daughter Natasha
Louise Delphine.

	Protocols
	NetManage ActiveX TSMTP
	Native SMTP
	Naming Conventions
	Inheritance And Delegation
	TBSMTP
	Socket Event Handlers
	RobotBob Version 0.1
	Debug Logfile
	Authentication
	Next Time...

